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Abstract

Building explanatory computational models of pragmatic lan-
guage use has been a long-standing goal in cognitive science
and pragmatics (e.g., Frank and Goodman (2012); Kramer and
van Deemter (2012); Ferreira (2019)). However, extant mod-
els are often limited to explaining selection from pre-specified
sets of utterances or interpretations. To address this limitation,
we explore a neuro-symbolic approach to modeling produc-
tion of more domain-independent, open-ended language based
on a classical cognitive model by Dale and Reiter (1995).
This approach combines LLM-powered modules which sup-
ply in-principle unrestricted inputs and processing for context-
dependent components of the task, with structured reasoning
modules within an architecture implementing cognitive struc-
ture. We show that this hybrid approach can model substan-
tially open-ended language production for complex contexts
from the A3DS dataset. Our neuro-symbolic model is at the
same time cognitively plausible and outperforms a few-shot
GPT-3.5-turbo baseline.
Keywords: cognitive modeling, language production, referen-
tial expressions, large language models, hybrid models

Introduction
The ability to flexibly and efficiently communicate across an
infinity of different contexts, while using limited cognitive
and linguistic resources is a distinctly human capacity. Iden-
tifying and explaining the cognitive mechanisms and reason-
ing processes underlying such language generation and in-
terpretation has been a long-standing goal of cognitive sci-
ence. Computational cognitive modeling is one of the main
tools that has allowed to describe, study and explain many
language-related phenomena, including human word learning
(Xu & Tenenbaum, 2007), sentence processing (Levy, Reali,
& Griffiths, 2008) and production (Levelt, 1999), as well as
pragmatic language use (Frank & Goodman, 2012).

Despite substantial progress, some fundamental features
of linguistic cognition are challenging to formal modeling.
Models often need to include various information that the
agent might recruit in their linguistic behavior, e.g., her own
beliefs, desires, intentions, and expectations (Clark, 1996;
McRae & Matsuki, 2009; Lupyan & Clark, 2015; Rohde,
Futrell, & Lucas, 2021, among others). A first strategy to
solve this problem is to attempt a direct specification of all
information that could be relevant to perform a communica-
tive task in its full generality. However, even comparatively
simple tasks like establishing reference to an object in con-
text is effectively unrestricted in the number of situations in
which it can occur.

Additionally, general world knowledge might turn out to
be relevant for a communicative task, and reasoners might in-
voke very different representations for different inputs, even
while solving the same task. For example, suppose that you
have the task to pick out the first of the two following sym-
bols: , . You might say “The potato-like object” and
a prototypical speaker of English will likely be able to iden-
tify the intended referent, despite the fact that nothing about
the picture itself makes a connection to potatoes. Rather, the
utterance choice is based on knowledge of the associations
interlocutors could make upon seeing the images, which goes
beyond the images themselves and involves world knowl-
edge. Finding an appropriate utterance in this case requires
information that is supplied “on the fly” by general cogni-
tion, but which cannot generally be anticipated a priori for
any instance of the task, e.g., picking out one image out of
two options. In these cases, manually specified spaces of
representation will fall short of being applicable in the open-
ended variety involved in human communication without the
need to change the model specification, even for small input
changes.

Given that the exhaustive specification strategy is not
promising for modeling language cognition, a second com-
mon strategy is to restrict both the input that the model can
deal with and the information that the model can recruit in
solving the task, under the assumption that the included sce-
narios are representative of the task in general and, therefore,
that the chosen restrictions allow for an unbiased assessment
of the resulting model. For instance, when modeling the do-
main of pragmatic interpretation in a reference game, only a
few available expressions and contexts might be included un-
der the assumption that no qualitative shift in mental manip-
ulation will happen for other contexts or expressions (Frank
& Goodman, 2012, among others). The restriction is gener-
ally done either by manually specifying the domain for the
relevant variables or by running experiments to elicit relevant
judgments from human participants.

This second strategy might pose various problems. Practi-
cally, manually specifying a space of relevant items is labo-
rious and running experiments to crowd-source these specifi-
cations is costly. Further, a manual specification increases the
degrees of freedom for the modeler generally beyond what is
informed by their theoretical commitments, leaving them to
make more or less arbitrary choices about what might become



relevant for the modeled phenomenon. This might lead to bi-
ased results even in the absence of such intentions (Chambers,
2017).

In this paper, we consider a third strategy to get around
manual specification in cognitive modeling. We explore a
neuro-symbolic architecture which combines neural modules
performing the open-ended subtasks within a manually speci-
fied task decomposition. We study the possibilities offered by
this approach for modeling less restricted language use than
under previous approaches. Specifically, we consider prag-
matic language generation as a case study of an open-ended
linguistic cognitive task, and we use a Large Language Model
(LLM) as a black-box stand-in model for the components of
the cognitive model which traditionally require manual re-
striction (e.g., the space of utterances that can be used).

The use of LLMs in this context is particularly natural,
since recent LLMs generate impressively fluent natural lan-
guage across contexts and tasks (Brown et al., 2020; Chowd-
hery et al., 2022; Touvron et al., 2023). Further, they are
trained on a huge amount of text and can serve as an ap-
proximation of the world knowledge that could become rele-
vant in utterance production (Wray, III, Kirk, & Laird, 2021;
Zhang, Lehman, Stanley, & Clune, 2023). Recent work
has already employed LLMs as components in more com-
plex computational systems. For instance, several advanced
prompting strategies for LLMs use search procedures (Yao et
al., 2023), condition the generation on additional information
(J. Liu et al., 2022), or make use of additional components for,
e.g., math problems (He-Yueya, Poesia, Wang, & Goodman,
2023), complex reasoning (Creswell, Shanahan, & Higgins,
2022; He-Yueya et al., 2023; Paranjape et al., 2023; Poesia,
Gandhi, Zelikman, & Goodman, 2023) or programming tasks
(Gao et al., 2022). However, the primary focus of these sys-
tems is often improving LLM performance on particular tasks
where simple prompting achieves worse results. Other work
has built LLM-powered agents for simulating human behav-
ior (Park et al., 2022), e.g., by combining cognitively inspired
LLM components (e.g., for planning and memory, Park et al.
(2023)). Wong et al. (2023) leverage LLMs in combination
with a probabilistic language of thought for exploring human-
like commonsense reasoning.

In sum, we explore a concrete case study, similar to previ-
ous cognitively inspired work such as the cognitive language
agents of Sumers, Yao, Narasimhan, and Griffiths (2023).
Additionally, we focus on exploring the potential and useful-
ness of LLMs as a building block in computational cognitive
modeling which translates theoretical insights from cognitive
science to models which allow model testing and model com-
parison in light of empirical evidence (see Frank (2023) for
related, more general discussion).

Our choice of case study—pragmatic language generation
in the context of a reference game—offers several advantages
for this exploration. First, context-dependent natural lan-
guage use is a particularly natural application for our LLM-
based strategy because it employs the LLM components on

a domain that they have been primarily trained for. Second,
it allows direct comparison and careful evaluation in light of
long-standing work in cognitive science and linguistics. Fi-
nally, it offers an avenue for direct assessment of the neuro-
symbolic modeling strategy when applied to established cog-
nitive models, as we describe in the next section. In the final
discussion we give some pointers to how the insights gained
from our model could generalize to language cognition more
generally.

The rest of the paper is structured as follows. First, we
present a proof-of-concept model of contrastive utterance
generation building on the model by Dale and Reiter (1995)
in order to explore whether and how LLMs might be used
in order to extend the cognitive science toolbox. Then, we
test this model in a concrete task and compare it to an LLM
baseline and a simpler lesioned model.

Models of Contrastive Utterance Generation
We focus on the task of contrastive utterance generation
(Kramer & van Deemter, 2012). In this task, the speaker
aims to produce an utterance that uniquely identifies a tar-
get state among a set of possible alternative distractor states
from which the target should be distinguished. This task is
a particularly natural testing ground for our idea. First, it
has been thoroughly investigated from different perspectives.
Probabilistic modeling of utterance selection has served as a
prime case study within computational pragmatics (Frank &
Goodman, 2012; Golland, Liang, & Klein, 2010; Hawkins,
Frank, & Goodman, 2020; Franke & Degen, 2016). Despite
its simplicity, performance in this task is related in complex
ways to human pragmatic skills. Typically, language users
aim to avoid unnecessarily long utterances, and systemati-
cally exploit pragmatic reasoning to convey the intended con-
tent while keeping utterances brief (Grice, 1975). Further,
various approaches to generating referential expressions have
been considered in computational linguistics (Gatt & Krah-
mer, 2018; Krahmer & Van Deemter, 2012; Dale & Reiter,
1995, among others).

According to a popular algorithmic idea, utterances (in-
cluding contrastive referential expressions) are constructed
not in a single pass, but rather in an iterative fashion (Newell
& Simon, 1972; Ferreira, 2019). A speaker would start by
generating simple utterances, and then run a loop that al-
ternates an evaluation step, where the current utterances are
judged with respect to the task at hand, and a generation step,
in which the currently best utterances are enriched. The loop
continues until an utterance is found that solves the task.

However, a cognitive model of contrastive utterance gener-
ation based on the iterative picture that can manipulate open-
ended language is still lacking. This is in part because such an
algorithm requires specifying the utterance evaluation mech-
anism and the way they are enriched in the loop. These com-
ponents depend on the context in an open-ended way, and
in previous implementation of this as the Iterative Algorithm
(IA) by Dale and Reiter (1995) they had to be hand-specified



Figure 1: Side-by-side illustration of two models for contrastive utterance generation. In both models, an utterance proposer
initially generates utterances for the target state, which are evaluated for truth by a semantic evaluator for all states in the context
(target and distractors). At this point the two models diverge. In the IMM (b), the informativity maximizer module then directly
selects an utterance given the semantic evaluator’s output. In the IM (a), the semantic evaluation is passed to a contrastivity
evaluator. If any utterance is contrastive, the informativity maximizer selects an utterance, otherwise the most contrastive
utterance is extended by an extended utterance proposer and passed back to the semantic evaluator. This cycle repeats until a
contrastive utterance has been found. In sum, the IM can be thought of as an extension where the model dynamically evaluates
the produced utterances and improves them in a loop until the task is solved (or a maximum number of five iterations is reached).

for each application. This makes this task a natural testing
ground for the neuro-symbolic strategy we discussed above,
by including LLMs as components for sampling informa-
tion that would normally be hand-specified.1 Furthermore, it
highlights that neuro-symbolic cognitive models might con-
sist of different generalizable types of modules. We catego-
rize three kinds of modules. First, evaluators provide context-
dependent assessment of alternatives, proposers supply these
possible alternatives or contingencies (e.g., plausible utter-
ances for a given context, plausible interpretations of an ut-
terance; cf. Sumers et al. (2023)), and reasoners combine and
process information supplied by the other two types of mod-
ules. Given their context-dependent nature, the first two types
might often be neural, while the last type can be symbolic.

In the following, we first provide an iterative model within
this framework which directly implements the IA. Then, we
compare it to a simpler model which generates the contrastive
expressions in a single pass.

Iterative Model
We implement the iterative algorithm (IA) for a reference
game by combining both symbolic computations and LLMs

1For all LLM components and the baseline, GPT-3.5
(gpt-3.5-turbo, checkpoints of summer 2023) with temperature
τ = 0.1 was used.

as described above, which we refer to as the iterative model
(IM; Figure 1 (a)). The context consists of a target state and
one or more distractor states. First, a set of utterances is pro-
posed describing a single feature of the target state. On each
iteration, the model evaluates the contrastivity of the candi-
date utterances generated so far. If none of the utterances is
contrastive, the model selects the most informative utterances
available, adds some detail of the target, and starts a new iter-
ation.2 This is repeated until an utterance is found that solves
the task. The utterances are generated, extended, and eval-
uated by calls to an LLM with appropriate prompts, but the
iterative structure is encoded in the model architecture as dis-
played in Figure 1 (a).

More technically, IM takes as input a list of full state de-
scriptions, one of which is the target state and the remaining
ones are distractors. First, the (LLM-based) single detail ut-
terance proposer generates candidate utterances that describe
a single detail of the target state based on the target state
description. Second, the semantic evaluator determines the
(literal) truth value of all candidate utterances for each state

2Note that distractors are not taken into account when extending
the description of the target. Instead, we consider only the utter-
ances produced so far along with the speaker’s background knowl-
edge about the target (i.e., all attributes that are true of the target).
This potentially allows the model to be applied to non-contrastive
utterance generation tasks in future research.



(target and distractors). Third, based on the semantic evalua-
tion in the previous step, the contrastivity reasoner evaluates
the contrastivity of the generated utterances, and determines
whether any utterance is fully contrastive (i.e., only true of the
target). If so, one utterance is chosen among the contrastive
utterances by the infomax (informativity maximization) rea-
soner and returned. Otherwise, a set of the most contrastive
utterances is constructed, and the (LLM-based) extended ut-
terance proposer module produces new alternatives for each
utterance, each of which includes one more detail from the
full description. The loop repeats from the semantic evalua-
tion on until a fully contrastive utterance is produced or the
maximal iteration steps have been reached, in which case the
infomax reasoner greedily selects the most contrastive among
the utterances produced in the most recent loop.

An exhaustive search over minimal contrastive expressions
becomes computationally intractable with increasingly com-
plex contexts (Krahmer & Van Deemter, 2012). To get around
this problem, the IM implements a search over a (partial)
tree of possible referential utterances. Only a single detail
of the target is added on each iteration, in an order proposed
by an LLM module rather than a manually-specified order as
in Dale and Reiter (1995). Therefore, the tree depth roughly
corresponds to the number of details included in the utter-
ance, while the width corresponds to the number of sampled
utterance proposals on each loop. If the number of propos-
als by the utterance proposers is less than the number of fea-
tures in the scene, not all possible utterances will be consid-
ered. Moreover, the search is greedy, in the sense that only
the most contrastive utterances are passed to the following it-
eration. The algorithm therefore ensures that utterances are
considered in order of the amount of details they describe.

Informativity Maximization Model
The IM presented above can be naturally lesioned by remov-
ing the iterative part, resulting in what we call the Informativ-
ity Maximization Model (IMM; Figure 1 (b)). In this case, the
first batch of produced and evaluated utterances is used by the
infomax reasoner, rather than iteratively improved upon. This
is a simple way of generating an utterance for solving the con-
trastive reference task, but it does not adapt to the complexity
of the task in context. The context is identical to the IM, but in
contrast to the first loop of the IM the utterances of the IMM
are not constrained to contain a single detail. The compatibil-
ity of each utterance is evaluated on all the distractor states in
the context and the model selects the utterance which is ap-
plicable to as few distractors as possible and therefore is most
informative.

As for the IM, the input to the model is a list of state de-
scriptions, including the target state and one or more distrac-
tors. The model proceeds in three steps (Figure 1 (b)). First,
an utterance proposer module uses an LLM call to generate
candidate utterances for the target state based on the target
state description. Second, a semantic evaluator module de-
termines, again via an LLM call, the truth value of each can-
didate utterance for each state (target and distractors). Lastly,
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an infomax reasoner module selects the most specific true ut-
terance.

The model solves the task when an utterance is generated
that uniquely identifies the target in the context of the distrac-
tors. This is made more difficult by the fact that utterances
are generated in a single pass, with the only criterion of be-
ing true of the target. This restriction not only decreases the
model performance, but is cognitively implausible. Experi-
mental work has shown that humans adjust the level of gran-
ularity of produced referential expressions depending on the
context (Graf, Degen, Hawkins, & Goodman, 2016; Degen,
Hawkins, Graf, Kreiss, & Goodman, 2020).

Experiments

We test the models described above on a contrastive refer-
ence game (Lewis, 1969) with the 3Dshapes dataset (Burgess
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& Kim, 2018).3 We use a text-based derivative of the dataset,
A3DS (Tsvilodub & Franke, 2023), which contains textual
descriptions of scenes consisting of a 3D geometric object in
an otherwise empty room. The states in the derived dataset
are unique and consist of a combination of values for the fol-
lowing attributes:

• Wall color, floor color, object color (independent)
red | orange | yellow | green | blue | pink | purple

• Object position (relative to background)
middle | right corner | left corner

• Object size
small | medium-sized | large

• Object type
ball | cylinder | block | pill

for a total of 12348 possible states. The state descriptions
used as context on which the models were tested were of the
form “The floor is {floor color}, the wall is {wall color}, the
{object color} {size} {object} is in the {position}”.4 While
not open-ended, this large state-space constitutes a challenge
in the contrastive utterance generation task, while enabling
automatic evaluation of contrastivity. In particular, the struc-
tured nature of the dataset allows to automatically determine
which features are contrastive, i.e., different for the target
scene in any given context, so that the contrastivity of a gen-
erated expression can be verified by checking if it mentions
constrastive features.

Baseline
We compare the results of the two models above with a base-
line model. The baseline consists of a single call to an LLM
asking for an utterance that solves the task. Following recent
results showing that LLM performance is improved with ex-
amples as well as instructions about the reasoning which help

3All materials can be found at [will be added in de-anonymized
version of paper].

4We also tested supplying state descriptions in the form of lists
of “{feature-value}”. However, the unnatural formatting led to poor
performance of the LLMs.

solving the task (Wei et al., 2022, among others), we use a
one-shot chain-of-thought prompt for the baseline.

Simulation Procedure
Each reference game included a target state sampled at ran-
dom and one or more distinct distractors. Each distractor dif-
fered from the target by maximally two features, which made
the identification of contrastive features more difficult. We
set the number of distractors to one, four, or eight. Moreover,
for the IM we set the number of utterances sampled by the
utterance proposer to either four or eight utterances. For the
IMM, the utterance proposer always sampled ten utterances.
We tested both models as well as the baseline on 100 refer-
ence games for each of the parameter configurations.

We evaluated the contrastivity of the final returned utter-
ance, i.e., the accuracy of the model in each reference game.
That is, we calculated the proportion of distractors against
which the target was set apart by the utterance. This was done
via the evaluation script from Tsvilodub and Franke (2023).
For instance, assuming that the target appeared in the context
of four distractors and that the generated utterance was true of
the target and one distractor, the accuracy for this reference
game would be 0.75. We compared the performance of the
hybrid models to the performance of the baseline.

Results
Results are shown in Figure 2. We computed the average
accuracy across references games in one configuration (i.e.,
for each number of distractors) for both models and the base-
line. The performance of the IMM decreased as the number
of distractors in the context increased. A bootstrapping anal-
ysis revealed that the performance of the IMM was credibly
worse than all other models, across the number of distractors
(P = 1). However, in contrast to the LLM baseline, Figure 2
suggests a trend towards a stabilization of the contrastivity
with higher numbers of distractors for the IMM, while the
LLM baseline performance decreased.

In contrast to the IMM, the iterative model (IM) generated
highly contrastive utterances which successfully set apart the
target from the distractors (Fig. 2). The contrastivity of utter-
ances produced by the IM remained high even with a large
number of distractors, outperforming the baseline and the
IMM (see Fig. 2, eight distractors). Bootstrapping confirmed
that the average contrastivity of the IM for four and eight dis-
tractors was above the baseline (P = 1), while for one distrac-
tor, no significant difference was observed due to a ceiling
effect.

The number of iterations required in the IM until fully con-
trastive utterances were produced increased with the num-
ber of distractors and thus with the difficulty of identifying
contrastive features (Figure 3). In particular, this shows that
the IM increased the complexity of the computation and of
the generated utterances in a context-dependent way. Fur-
thermore, Figure 3 suggests a slight trade-off between the
tree width and tree depth required for producing contrastive
utterances (x-axis vs. color): when more utterances were



proposed at each step, it was more likely that at least one
of them mentioned contrastive features, so that fewer itera-
tions were required overall. Figure 4 suggests that the IM
produced context-sensitive pragmatic contrastive expressions
which were shorter and, therefore, as an approximation, men-
tioned less scene features in a simpler context (one distrac-
tor) than in more complex contexts (four or eight distrac-
tors). Manual inspection of the model outputs revealed that,
when approaching the maximal number of iterations, utter-
ances sometimes became more descriptive. In some cases the
utterances repeated single features within the sentence, but
mostly they contained additional information or reformula-
tions of the partial description passed to the extended utter-
ance proposer.

Discussion
In this paper, we focused on a promising strategy towards
open-ending computational cognitive models of linguistic
cognition via neuro-symbolic architectures, focusing on con-
trastive utterance generation as a case study. We used this
architecture to implement an iterative model based on the
IA (Dale & Reiter, 1995) for a reference game setting. The
model adapts the generated utterances to the complexity of
the task at hand, while producing open-ended language that
is natural in context. We compared the iterative model (IM)
to a simple model (IMM) that produces utterances in a sin-
gle pass by describing the target scene and then evaluating
the informativity of the proposed utterances in context. We
found that the IM outperforms both the simple model and a
pure LLM baseline in a case study with the A3DS dataset.

The case study we consider gives us some insights into
the more general neuro-symbolic approach to cognitive mod-
eling we consider. We observed that the LLM-based pro-
posers worked well and provided plausible samples. How-
ever, despite improved performance, the IM was not perfect
in that for some reference games, utterances were extended
further even in the presence of necessary contrastive features
(cf. ceiling effect / asymptotic shape in Figs. 3, 4). We hy-
pothesize that this is due to the limitations of the LLM-based
semantic evaluator which provided information for the stop-
ping decision. Improvement of this component opens up an
exciting avenue for future work towards integrating LLMs
in full probabilistic cognitive models. This would allow for
quantitative model comparison, e.g., with respect to experi-
mental human data.

Contrastive utterance generation, though a natural first step
to apply the strategy we explore in this paper, is only one case
study. Nonetheless, it points to a general strategy for develop-
ing computational models of linguistic cognition and related
domains that involve open-ended resources. First, a cogni-
tive task is analyzed as a series of processing steps broken
down as much as can be informed by theoretical considera-
tions. This analysis will normally leave some steps not an-
alyzed enough for a fully decomposed implementation. For
instance, in the IM we presented above we did not have an

algorithmic account of how the truth of an utterance is deter-
mined in a context. Instead of manually specifying in advance
their behavior as has traditionally been done, we can capture
these steps as information processing modules described in
natural language, given inputs from other steps in our analy-
sis. Finally, we can offload these task descriptions to LLMs
or other neural modules.

This strategy presents several challenges. First, the strategy
inherits problems with LLMs in general, such as excessive
sensitivity to apparently minor changes to the prompt, un-
interpretability, so-called hallucinations and biases (Bender,
Gebru, McMillan-Major, & Shmitchell, 2021; Ji et al., 2023;
N. F. Liu et al., 2023; Shi et al., 2023; Zhao et al., 2023). Sec-
ond, the specific strategy we propose leads to using LLMs for
open-ended tasks, which often instantiate intractable prob-
lems. Previous literature has shown that such problems can-
not be solved, even approximately, by LLMs (van Rooij et al.,
2023). However, since we do not use the LLMs themselves as
explanatory components in the model, we do not need them
to model humans across all possible scenarios. Rather, it is
sufficient for our strategy that the task is solved for the cases
on which the model is tested—for typical inputs, this can be
achieved by LLMs and give better empirical coverage than
would be possible with hand-specified modules.

The modeling strategy we propose also has various advan-
tages. First, it provides cognitive models which are as in-
formed by the modeler’s theoretical commitments as possi-
ble, and no more. For instance, we showed above how we
could build a model of utterance generation without an algo-
rithmic picture of truth evaluation. While LLMs are not the-
ory free, they are our best data-based approximation to gen-
eral problem solvers, and offer the modeler fewer degrees of
freedom in modeling. Second, this strategy allows the mod-
els to deal with more open-ended input than has been possible
so far, and therefore the resulting models can be tested on a
wider variety of inputs. For instance, while the A3DS dataset
does have a constrained set of states, this state space is not en-
coded internally in the IM, and so it is virtually open-ended
from the model’s perspective. More importantly, while we
tested the model above on the A3DS dataset for ease of eval-
uation, IM itself accepts in principle any state description.
Finally, the neural modules, insofar as they encode a specific
task, can be reused across cognitive models, which could over
time accumulate into a toolbox of well-tested modules for
cognitive modeling.

In conclusion, we have provided a neuro-symbolic model
of pragmatic language generation, showing that, despite lim-
itations, integrating modern LLMs into the toolbox of cog-
nitive scientists might offer a new research agenda on open-
ending cognitive models.
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